Simply connected nilpotent Lie groups with quasi-standard $C^*$-algebras
نویسندگان
چکیده
منابع مشابه
Normal geodesics associated to driftless control systems on step-2 simply connected nilpotent Lie groups
We present in this talk some recent results on the geodesic problem defined by means of a left invariant distribution of rank n on a step-2 simply connected nilpotent Lie group G of dimension n(n + 1)/2. From the control theory point of view, the distribution defines a driftless control system which together with the energy functional for admissible curves, determines a well defined optimal con...
متن کاملALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS
Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...
متن کاملSome properties of nilpotent Lie algebras
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
متن کاملEquivariant K-Theory of Simply Connected Lie Groups
We compute the equivariant K-theory K∗ G(G) for a simply connected Lie group G (acting on itself by conjugation). We prove that K∗ G(G) is isomorphic to the algebra of Grothendieck differentials on the representation ring. We also study a special example of a nonsimply connected Lie group G, namely PSU(3), and compute the corresponding equivariant K-theory.
متن کاملMean eigenvalues for simple, simply connected, compact Lie groups
We determine for each of the simple, simply connected, compact and complex Lie groups SU(n), Spin(4n+2) and E6 that particular region inside the unit disk in the complex plane which is filled by their mean eigenvalues. We give analytical parameterizations for the boundary curves of these so-called trace figures. The area enclosed by a trace figure turns out to be a rational multiple of π in eac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1997
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-97-03830-6